文档数学概率论随机变量的数字特征随机变量的数字特征期望定义对离散型随机变量 XXX,如果 ∑i=1+∞xipi\displaystyle\sum_{i=1}^{+\infty} x_i p_ii=1∑+∞xipi 绝对收敛,则该级数为其期望 E(X)E(X)E(X)。对离散型随机变量 XXX,如果 ∫−∞+∞xf(x)dx\displaystyle\int_{-\infty}^{+\infty} xf(x)\mathrm dx∫−∞+∞xf(x)dx 绝对收敛,则该定积分为其期望 E(X)E(X)E(X)。期望不是随机变量,是 XXX 的数字特征。性质已知 X,Y=g(X)X,Y=g(X)X,Y=g(X),则 E(Y)=E(g(X))=∫−∞+∞g(x)f(x)dxE(Y) = E(g(X)) =\displaystyle\int_{-\infty}^{+\infty} g(x) f(x) \mathrm dxE(Y)=E(g(X))=∫−∞+∞g(x)f(x)dx。已知 (X,Y),Z=g(X,Y)(X,Y),Z=g(X,Y)(X,Y),Z=g(X,Y),则 E(Z)=E(g(X,Y))=∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdyE(Z) = E(g(X,Y)) = \displaystyle\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} g(x,y) f(x,y) \mathrm dx\mathrm dyE(Z)=E(g(X,Y))=∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdy。E(aX+b)=aE(X)+bE(aX+b) = a E(X)+bE(aX+b)=aE(X)+bE(X+Y)=E(X)+E(Y)E(X+Y) = E(X) + E(Y)E(X+Y)=E(X)+E(Y)X,YX,YX,Y 独立时,E(XY)=E(X)E(Y)E(XY) = E(X)E(Y)E(XY)=E(X)E(Y)常用期望X∼b(n,p)X \sim b(n,p)X∼b(n,p):E(X)=npE(X) = npE(X)=npX∼π(λ)X \sim \pi(\lambda)X∼π(λ):E(X)=λE(X) = \lambdaE(X)=λX∼G(p)X \sim G(p)X∼G(p):E(X)=1pE(X) = \dfrac{1}{p}E(X)=p1X∼U(a,b)X \sim U(a,b)X∼U(a,b):E(X)=a+b2E(X) = \dfrac{a+b}{2}E(X)=2a+bX∼E(λ)X \sim E(\lambda)X∼E(λ):E(X)=1λE(X) = \dfrac{1}{\lambda}E(X)=λ1X∼N(μ,σ2)X \sim N(\mu,\sigma^2)X∼N(μ,σ2): E(X)=μE(X) = \muE(X)=μ方差定义已知随机变量,若 E((X−E(X))2)E((X-E(X))^2)E((X−E(X))2) 存在,则其为方差 D(X)D(X)D(X)。D(X)=E(X2)−E2(X)D(X)=E(X^2)-E^2(X)D(X)=E(X2)−E2(X)。常用方差X∼b(n,p)X \sim b(n,p)X∼b(n,p):D(X)=np(1−p)D(X) = np(1-p)D(X)=np(1−p)X∼π(λ)X \sim \pi(\lambda)X∼π(λ):D(X)=λD(X) = \lambdaD(X)=λX∼G(p)X \sim G(p)X∼G(p):D(X)=1−pp2D(X) = \dfrac{1-p}{p^2}D(X)=p21−pX∼U(a,b)X \sim U(a,b)X∼U(a,b):D(X)=(b−a)212D(X) = \dfrac{(b-a)^2}{12}D(X)=12(b−a)2X∼E(λ)X \sim E(\lambda)X∼E(λ):D(X)=1λ2D(X) = \dfrac{1}{\lambda^2}D(X)=λ21X∼N(μ,σ2)X \sim N(\mu,\sigma^2)X∼N(μ,σ2): D(X)=σ2D(X) = \sigma^2D(X)=σ2协方差定义(X,Y)(X,Y)(X,Y) 为二维随机变量,若 E((X−E(X))(Y−E(Y)))E((X - E(X))(Y-E(Y)))E((X−E(X))(Y−E(Y))),则其为 XXX 和 YYY 的协方差 Cov(X,Y)Cov(X,Y)Cov(X,Y)。如果 Cov(X,Y)=0Cov(X,Y)=0Cov(X,Y)=0,则 XXX 和 YYY 不相关,否则相关。性质如果 X,YX,YX,Y 独立,则 X,YX,YX,Y 不相关。反之不一定。Cov(X,Y)=E(XY)−E(X)E(Y)Cov(X,Y)=E(XY)-E(X)E(Y)Cov(X,Y)=E(XY)−E(X)E(Y)D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X+Y)=D(X)+D(Y)+2Cov(X,Y)Cov2(X,Y)≤D(X)D(Y)Cov^2(X,Y) \le D(X)D(Y)Cov2(X,Y)≤D(X)D(Y),X,YX,YX,Y 有严格线性关系时取等。多维随机变量大数定律和中心极限定理