常用公式与不等式

常用公式与不等式

  • 因式分解
    • anbn=(ab)(an1+an2b+an3b2++abn2+bn1)a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+\cdots+ab^{n-2}+b^{n-1})
    • an1=(a1)(an1+an2+a+1)a^n-1=(a-1)(a^{n-1}+a^{n-2}\cdots+a+1)
  • 不等式
    • aba±ba+b||a|-|b||\le |a\pm b|\le |a|+|b|
  • 三角恒等变换
    • 恒等式
      • sin2x+cos2x=1\sin^2x+\cos^2x=1
      • tan2x+1=sec2x\tan^2x+1=\sec^2x
      • cot2x+1=csc2x\cot^2x+1=\csc^2x
    • 和差化积与积化和差
      • sinα+sinβ=2sinα+β2cosαβ2\sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}sinαcosβ=12(sin(α+β)+sin(αβ))\sin\alpha\cos\beta=\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta))
      • sinαsinβ=2cosα+β2sinαβ2\sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}cosαsinβ=12(sin(α+β)sin(αβ))\cos\alpha\sin\beta=\frac{1}{2}(\sin(\alpha+\beta)-\sin(\alpha-\beta))
      • cosα+cosβ=2cosα+β2cosαβ2\cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}cosαcosβ=12(cos(α+β)+cos(αβ))\cos\alpha\cos\beta=\frac{1}{2}(\cos(\alpha+\beta)+\cos(\alpha-\beta))
      • cosαcosβ=2sinα+β2sinαβ2\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}sinαsinβ=12(cos(α+β)cos(αβ))\sin\alpha\sin\beta=-\frac{1}{2}(\cos(\alpha+\beta)-\cos(\alpha-\beta))
      • tanα+tanβ=sin(α+β)cosαcosβ\tan\alpha+\tan\beta=\frac{\sin(\alpha+\beta)}{\cos\alpha\cos\beta}
      • tanαtanβ=sin(αβ)cosαcosβ\tan\alpha-\tan\beta=\frac{\sin(\alpha-\beta)}{\cos\alpha\cos\beta}
    • 辅助角公式
      • asinx+bcosx=a2+b2sin(x+arctanba)a\sin x+b\cos x=\sqrt{a^2+b^2}\sin\left(x+\arctan\frac{b}{a}\right)
  • 不定积分表
    • kdx=kx+C\int k\mathrm dx=kx+C
    • xμdx=1μ+1xμ+1+C (μ1)\int x^\mu\mathrm dx=\frac{1}{\mu+1}x^{\mu+1}+C\ (\mu\ne -1)
    • 1xdx=lnx+C\int \frac{1}{x}\mathrm dx=\ln|x|+C
    • exdx=ex+C\int e^x\mathrm dx=e^x+C
    • axdx=axlna+C (a>0,a1)\int a^x\mathrm dx=\frac{a^x}{\ln a}+C\ (a>0,a\ne 1)
    • lnxdx=xlnxx+C\int \ln x\mathrm dx=x\ln x-x+C
    • logaxdx=xlnxxlna+C (a>0,a1)\int \log_a x\mathrm dx=\frac{x\ln x-x}{\ln a}+C\ (a>0,a\ne 1)
    • sinxdx=cosx+C\int \sin x\mathrm dx=-\cos x+C
    • cosxdx=sinx+C\int \cos x\mathrm dx=\sin x+C
    • tanxdx=lncosx+C\int \tan x\mathrm dx=-\ln|\cos x|+C
    • cotxdx=lnsinx+C\int \cot x\mathrm dx=\ln|\sin x|+C
    • secxdx=lnsecx+tanx+C=lnsinx+1cosx+C\int \sec x\mathrm dx=\ln|\sec x+\tan x|+C=\ln\left|\frac{\sin x+1}{\cos x}\right|+C
    • cscxdx=lncscxcotx+C=lnsinxcosx+1+C\int \csc x\mathrm dx=\ln|\csc x-\cot x|+C=\ln\left|\frac{\sin x}{\cos x+1}\right|+C
    • 1cos2xdx=sec2xdx=tanx+C\int \frac{1}{\cos^2 x}\mathrm dx=\int\sec^2 x\mathrm dx=\tan x+C
    • 1sin2xdx=csc2xdx=cotx+C=1tanx\int \frac{1}{\sin^2 x}\mathrm dx=\int\csc^2 x\mathrm dx=-\cot x+C=-\frac{1}{\tan x}
    • sinhxdx=coshx+C\int \sinh x\mathrm dx=\cosh x+C
    • coshxdx=sinhx+C\int\cosh x\mathrm dx=\sinh x+C
    • 11+x2dx=arctanx+C=arccotx+C1\int\frac{1}{1+x^2} \mathrm dx=\arctan x+C=-\operatorname{arccot} x+C_1
    • 1x21dx=12lnx1x+1+C\int \frac{1}{x^2-1}\mathrm dx=\frac{1}{2}\ln\left|\frac{x-1}{x+1}\right|+C
    • 11x2dx=12lnx1x+1+C=12lnx+1x1+C\int \frac{1}{1-x^2}\mathrm dx=-\frac{1}{2}\ln\left|\frac{x-1}{x+1}\right|+C=\frac{1}{2}\ln\left|\frac{x+1}{x-1}\right|+C
    • 11x2dx=arcsinx+C=arccosx+C1\int\frac{1}{\sqrt{1-x^2}} \mathrm dx=\arcsin x+C=-\arccos x+C_1
    • 1x2+1dx=arsinhx+C=ln(x+x2+1)+C\int\frac{1}{\sqrt{x^2+1}}\mathrm dx=\operatorname{arsinh}x+C=\ln(x+\sqrt{x^2+1})+C
    • 1x21dx=arcoshx+C=ln(x+x21)+C\int\frac{1}{\sqrt{x^2-1}}\mathrm dx=\operatorname{arcosh}x+C=\ln(x+\sqrt{x^2-1})+C